تحلیل مولفه های اصلی با استفاده از SPSS

تحلیل مولفه های اصلی با استفاده از SPSS

تکنیک آماری تجزیه و تحلیل مولفه های اصلی (PCA)، روشی آماری است که غالبا برای بررسی گروهی از متغیرهای همبسته بکار می رود. مهم ترین کاربردهای این روش را می توان در تجزیه و تحلیل نماگرهای چندگانه، اندازه گیری و شناخت ساختارهای پیچیده، شاخص سازی و کاهش ابعاد داده ها جستجو نمود. ادامه مطلب را ببینید... این روش خصوصا در شرایطی که ابعاد داده ها و ترکیب ساختار آنها کاملا مشخص نیست مفید می باشد. سالهاست که این روش در علوم مختلف خصوصا در حوزه آنالیز داده های ژنومی استفاده های زیادی می شود. یکی از کاربردهای عمده این روش در مبحث ژنومی یافتن ساختار ارتباطی بین متغیرها است که در حقیقت همان کلاستربندی متغیرها می باشد. جهت بررسی ساختار جمعیت های مورد مطالعه آنالیز PCAبر اساس همه اطلاعات نشانگرهای در دسترس مورد ارزیابی قرار می گیرد.

در  واقع روشی از آنالیزهای چند متغیره آماری است که تعداد کمتری از عوامل را بنام مولفه های اصلی از میان عوامل اولیه گزینش می کند، به طوریکه تعدادی از اطلاعات کم اهمیت حذف می شوند. اولین مولفه اساسی استخراج شده، بیشترین مقدار پراکندگی داده ها را در کل مجموعه داده ها در نظر می گیرد. این امر بدان معنی است که اولین مولفه حداقل با تعدادی از متغیرها همبسته است. دومین مولفه استخراج شده دو ویژگی مهم دارد،اول اینکه این مولفه بیشترین مجموعه داده ها که توسط مولفه اول محاسبه نشده است را در نظر می گیرد و دوم اینکه با مولفه اول همبستگی ندارد. به عبارتی، بدون در نظر گرفتن مولفه ی قبلی، با گذر از مولفه ی ابتدایی به سمت مولفه های انتهایی هر مولفه واریانس کمتری را تشریح می کند. یعنی همیشه مولفه ی اصلی اول بیشترین مقدار واریانس و مولفه های اخر کمترین واریانس را شرح می دهند که در این صورت با حذف مولفه های اخر اطلاعات زیادی از دست نخواهد رفت. 


هیچ نظری تا کنون برای این مطلب ارسال نشده است، اولین نفر باشید...